The Inclusion-Exclusion Rule and its Application to the Junction Tree Algorithm
نویسندگان
چکیده
In this paper, we consider the inclusion-exclusion rule – a known yet seldom used rule of probabilistic inference. Unlike the widely used sum rule which requires easy access to all joint probability values, the inclusion-exclusion rule requires easy access to several marginal probability values. We therefore develop a new representation of the joint distribution that is amenable to the inclusion-exclusion rule. We compare the relative strengths and weaknesses of the inclusion-exclusion rule with the sum rule and develop a hybrid rule called the inclusionexclusion-sum (IES) rule, which combines their power. We apply the IES rule to junction trees, treating the latter as a target for knowledge compilation and show that in many cases it greatly reduces the time required to answer queries. Our experiments demonstrate the power of our approach. In particular, at query time, on several networks, our new scheme was an order of magnitude faster than the junction tree algorithm.
منابع مشابه
Voltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملApplication of the rule extraction method to evaluate seismicity of Iran
Assessing seismic hazards involves specifying the likelihood, magnitude and location of earthquakes in a region. Predicting the seismic hazards is the first step in reducing the impact of the damage caused by an earthquake. In this study, to fully utilize all the known parameters which may possibly affect the occurrence of earthquakes (mb ≥ 4.5); a data-driven rule-extraction method called the...
متن کاملAn improved algorithm to reconstruct a binary tree from its inorder and postorder traversals
It is well-known that, given inorder traversal along with one of the preorder or postorder traversals of a binary tree, the tree can be determined uniquely. Several algorithms have been proposed to reconstruct a binary tree from its inorder and preorder traversals. There is one study to reconstruct a binary tree from its inorder and postorder traversals, and this algorithm takes running time of...
متن کاملOptimization of Dez dam reservoir operation using genetic algorithm
Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As...
متن کامل